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T0 Separation in Axiomatic Quantum Mechanics†
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Using the physical duality between states and properties, Aerts et al. obtained a
“lattice” representation for all closure spaces, through state property systems. In
this paper I discuss the equivalence of ‘state determination’ for state property
systems with T0 separation for closure spaces. I also provide a link with well-
known lattice representations of closure spaces, through some results of Erné.

1. DUALITY OF STATES AND PROPERTIES

In the Geneva–Brussels approach to the foundations of physics (Piron,
1976, 1989, 1990; Aerts, 1982, 1983; Moore, 1999) an entity is described
by its ‘states’ and its ‘properties.’ The physical relation between states and
properties is ‘actuality.’ So, I presuppose the existence of a relation I between
the set + of properties and the set ( of states,3 where for a P + and p P
(, aIp is interpreted as “property a is actual in state p.” As with any relation,
I induces a closure on ( and on +. This is a result due to Birkhoff (1967,
Chapter 5, §7). Indeed, if for A , ( and B , + one puts

A+ 5 {a P +.aIp ∀p P A} (1)

B* 5 {p P (.aIp ∀a P B} (2)

then 3(() → 3((), A ° A†*, and 3(+) → 3(+), B ° B*†, are closure
operators. Moreover, Birkhoff proves that the mappings A ° A+ and B ° B*
define dual isomorphisms between the complete lattices of closed subsets of
( and +.
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The relation I encodes the “physical duality of states and properties”
(Moore, 1999). Using I, one can define a preorder on +:

a , b ⇔ a* , b* (3)

with a slight abuse of notation. It is of course “physical implication with
respect to actuality” (Moore, 1999). After identification of mutually implying
properties, + becomes a poset. It is then operationally justified (a key result
in the Geneva School) to demand that + is a complete lattice in which the
meet is “physical conjunction with respect to actuality” (Moore, 1999):

(∧i ai)Ip ⇔ ai Ip ∀i (4)

which is read as “∧i ai is actual iff every ai is actual.” This is equivalent to
demanding every closed subset of ( be of the form a* for some property
a P +. Indeed, let F 5 F†* be a closed subset of (. From (4) it follows
that (∧F †)* 5 ùaPF† a* 5 F †* 5 F. Conversely, consider a family ai P +.
Then there exists b P + such that b* 5 ùi a*i . Consequently, b 5 ∧i ai and
(4) holds. In the Geneva School, the mapping a ° a*, which is now a lattice
isomorphism between + and the lattice of closed subsets of (, has been
named the Cartan map.

Putting these ideas into one structure and writing j( p) for p† ( p P (),
Aerts et al. (1999) defined state property systems. A triple ((, +, j) is a
state property system (sps) if ( is a set, (+, ∧, ,) is a complete lattice, and
j: ( → 3(+) is a function such that j( p) never contains the universal lower
bound 0 of + (0 is never actual) and

a , b ⇔ if a P j( p) then b P j( p) (5)

∧i ai P j( p) ⇔ ai P j( p) ∀i (6)

Obviously (5) and (6) are restatements of (3) and (4). Putting sj( p) 5 ∧j( p),
it is clear that j( p) 5 [sj( p), 1] for every p P ( (1 is the maximum of +).
Evidently, sj( p) is the strongest (minimal) property which is actual in state p.

A couple (m, n) is a morphism ((8, +8, j8) → ((, +, j) of sps’s if
m: (8 → ( and n: + → +8 are maps such that for p8 P (8 and a P +

a P j(m( p8)) ⇔ n(a) P j8( p8) (7)

For the physical idea behind this definition, I refer to Aerts et al. (1999).
The category of sps’s and their morphisms is denoted SP. The two functors
given in (8) and (9) below establish an equivalence between SP and the
category of closure spaces with 0⁄ closed and continuous maps Cls (Aerts et
al., 1999).
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F: SP → Cls, H((, +, j) ° ((, ^+)
(m, n) ° m

(8)

G: Cls → SP, H((, ^) ° ((, ^, j^)
m ° (m, m21)

(9)

where ^+ 5 {{p P (: a P j( p)}.a P +} and j^: ( → 3(^),
p ° {F P ^.p P F}. So, on the object side, F constructs one of the “Birkhoff
polarity closures” for I , + 3 ( defined by aIp if a P j( p). Conversely, the
object correspondence of G is presented in Aumann (1970). This equivalence
provides a “lattice representation” for all closure spaces and, in this sense,
generalizes Erné’s (1984) lattice representation for T0 closure spaces. As will
be explained in Section 4, the latter representation is the cornerstone of Erné’s
general construction providing “all” lattice representable categories of closure
spaces. In the same section I shall show how the above equivalence fits into
this scheme.

In the final section I give a short discussion of T0 separation for orthogo-
nality spaces.

2. STATE DETERMINATION AND T0 SEPARATION

Traditionally, in the Geneva–Brussels approach, the state p of an entity
is identified with its actual properties, i.e., with j( p). In this section I review
the implications of this (physical) assumption on the equivalence of SP and
Cls. Since they are straightforward, I omit the proofs, which can be found
in Aerts et al. (1999).

We call an sps ((, +, j) state determined if j is injective.4 In other
words, ((, +, j) is state determined if every state p P ( is determined by
its actual properties j( p). Let SP0 be the full subcategory of SP, with state-
determined sps’s as objects.

Lemma 1. Let ((, +, j) be an sps. The following are equivalent:

1. ((, +, j) is state determined.
2. sj: ( → +, p ° ∧j( p), is injective.
3. F((, +, j) is a T0 closure space.

Conversely, a closure space ((, ^) is T0 iff G((, ^) 5 ((, ^, j^ ) is a
state-determined sps.

Recall that a closure space ((, ^) is said to be T0 if cl( p) 5 cl(q) ⇒
p 5 q for p, q P (, where for A , (, cl(A) 7 ù{F P ^.A , F}.

4 In formal concept analysis the corresponding contexts are called ‘clarified.’
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Let Cls0 be the full subcategory of Cls of T0 closure spaces. The next
proposition easily follows.

Proposition 1. The functors F and G of (8) and (9) restrict and corestrict
to equivalence establishing functors between SP0 and Cls0.

3. STATES AS STRONGEST ACTUAL PROPERTIES

Let ((, +, j) be a state-determined sps. Then, by condition 2 of Lemma
1, a state p P ( may be identified with sj( p) P +, i.e., with the strongest
property it makes actual. As a consequence, ( can be embedded into + as
an order-generating subset (see Lemma 2). This engenders another equiva-
lence of categories (Proposition 2). The proofs can again be found in Aerts
et al. (1999).

Lemma 2. Let ((,+,j) be an sps. Then 0 ¸ (j 7 sj(() is an order-
generating subset of +: for every a in +,

a 5 ∨{x P (j.x , a} (10)

A couple ((, +) is a based complete lattice (bcl) if + is a complete lattice
and ( , + is an order-generating subset not containing 0. The previous
lemma then becomes ((, +, j) P SP ⇒ ((j, +) is a bcl.

Lemma 3. Let ((,+) be a bcl. If we define

j: ( → 3(+), p ° [p,1] (11)

then ((, +, j) is a state-determined sps.

To deal with the morphisms, I shall use Galois connections. I shall write
n* for the lower adjoint of a meet-preserving map n and f * for the upper
adjoint of a join-preserving f.

Consider two bcl’s ((8, +8), ((, +). A function f: +8 → + is a morphism
of bcl’s if f preserves joins and f ((8) , (. The category of bcl’s will be
denoted L0.

Proposition 2. The following two functors establish an equivalence
between SP0 and L0:

H: SP0 → L0, H((, +, j) ° ((j, +)
(m, n) ° n*

(12)

K: L0 → SP0, H((, +) ° ((, +, j)
f ° ( f .((8, f *) (13)

where j of (13) is given in (11).
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The results above can be summarized in the following scheme, which
can be read as a commutative diagram.

Cls ' SP
ø ø

Cls0 ' SP0 ' L0

(14)

4. CONNECTION WITH ERNÉ’S RESULT

Erné (1984) gives a direct proof of the equivalence of Cls0 and L0. In
fact, his functors are H + G and F + K. Based on this equivalence, he gives
a general construction for “lattice representable” (or l-representable, after
Erné) categories of closure spaces. I give an outline of his result. Note that
I shall change his definition of ‘invariant selection’ slightly: for Erné the
empty set need not be closed.

Given a category C of closure spaces, i.e., a full and isoclosed subcate-
gory of Cls, Erné introduces the l-representing functor

T: C → L∨, H((, ^) ° (^, ù, ,)
f ° [F ° cl( f(F ))]

(15)

where L∨ is the category of complete lattices with join-preserving maps. C
is then called l-representable if a suitable corestriction of T yields an equiva-
lence of categories. Erné gives many examples of such categories. Well
known is the equivalence of the category of T1 closure spaces and the category
of complete atomistic lattices.

Next, let L be an isoclosed subclass of the class of complete lattices.
An invariant selection S for L is a (class-theoretic) function assigning to each
+ P L a certain 0 ¸ S(+) , +, such that whenever c is a lattice isomorphism
between L-elements + and +8, then c(S(+)) 5 S(+8) 5 S(c(+)). Given an
invariant selection S, Erné defines the isoclosed subcategory LS of L∨ as
follows. A complete lattice + P L is an object of LS iff S(+) is an order-
generating subset of +. An LS-morphism w: + → +8 is a join-preserving
map, such that w(S(+)) , S(+8). Hence, LS may be (and is) considered a
full subcategory of L0.

He calls a closure space ((, ^) S-complete if it is T0, T((, ^) P L, and
S(T((, ^)) 5 {cl( p).p P (}. The S-complete closure spaces form an isoclosed
and full subcategory of Cls0, denoted CS. Finally, I state Erné’s theorems.

Theorem 1. For every invariant selection S, the categories CS and LS

are equivalent.

This equivalence is a restriction of the equivalence between Cls0 and
L0. The next theorem says that all l-representable categories of closure spaces
can be obtained this way.
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Theorem 2. A category C of closure spaces is l-representable if and only
if there exists an isoclosed class L of complete lattices and an invariant
selection S for L such that C 5 CS.

Given an isoclosed class L and an invariant selection S, I also introduce
the full subcategory SPS of SP of state property systems ((,+,j) such that
F((,+,j) 5 ((,^+) is in CS. Using that F + G is the identical functor, it is
obvious that F and G (co)restrict to an equivalence CS ' SPS. Recall that
the (Cartan) isomorphism k between + and ^+ is given by k(a) 5 {p P ( .
a P j ( p)}. If ((,+,j) belongs to SPS , then ^+ P L and S(^+) 5 S (k(+))
5 {cl( p).p P (}. Therefore, since + > ^+, + P L and S(+) 5 k21(S(k(+)))
5 (j. It follows that H((,+,j) is in LS , L0. Using that F + K: LS → CS

(this is one of Erné’s functors in Theorem 1), it is now straightforward that
H and K (co)restrict to an equivalence SPS ' LS.

Summarizing, any l-representable category of closure spaces C fits, for
a suitable invariant selection S, into the following scheme, which can be read
as a commutative diagram and which shows how the equivalences of Sections
1–3 refine Erné’s beautiful result:

Cls ' SP
ø ø

Cls0 ' SP0 ' L0
ø ø ø

C 5 CS ' SPS ' LS

(16)

5. ORTHOGONALITY SPACES AND T0 SEPARATION

Let ( be a set and let ' be an antireflexive and symmetric relation on
(. I then call ((,') a pseudo orthogonality space (pos). If for A , (, A'

5 {p P (. p ' a ∀ a P A}, then 3(() → 3((), A ° A'' is a closure
operator such that 0⁄ '' 5 0⁄ . Moreover, A ° A' is an orthocomplementation
on the lattice of closed (biorthogonal) subsets (Birkhoff, 1967, Chapter 5,
§7; Moore, 1995). Moore (1995) has proven that this closure is T1 iff it
separates points: p Þ q ⇒ ∃r: p ' r, q '⁄ r; which is equivalent to
p Þ q ⇒ p' ,⁄ q'. The couple ((, ') is then called a ‘state space’ or an
‘orthogonality space’ (Moore, 1995, 2000). T0 separation can be character-
ized analogously.

Proposition 3. Let ' be a symmetric relation on (. The closure operator
3(() → 3((), A ° A'', is T0 iff

p Þ q ⇒ p' Þ q' (17)

Indeed, if (17) holds and p'' 5 q'', then p''' 5 p' 5 q', whence p 5
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q. Conversely, if p' 5 q', then p'' 5 q'', and so by T0, p 5 q. In fact,
the mathematics behind Lemma 1 and this Proposition are the same.

Consider two pos’s ((1, '1) and ((2, '2) and the following three pos’s:

1. (1 3 (2 with ( p1, p2) 'P (q1, q2) ⇔ p1 '1 q1 and p2 '2 q2.
2. (1 ø̇ (2 with pi 'q qj ⇔ i Þ j or (i 5 j and pi 'i qi) (i, j P {1, 2}).
3. (1 3 (2 with ( p1, p2) 'V̀ (q1, q2) ⇔ p1 '1 q1 or p2 '2 q2.

The closure associated to the first pos is the product (in Cls) of ((1, ?''1)
and ((2, ?''1). The second pos generates the coproduct ((1, ?''2) q
((2, ?''2). The last one is the ‘separated product’ introduced by Aerts (1982).
For the first two it is well known that they are T0 (T1) iff (1 and (2 are.
That this is also true for the separated product in the T1 case was shown by
Aerts (1982, Theorem 26).

Proposition 4. The separated product of (1 and (2 is T0 iff (1 and (2 are.

Sufficiency can be proven as follows. Take ( p1, p2) Þ (q1, q2) and
suppose that p1 Þ q1 and p'

1 { r1 ¸ q'
1 . Then ( p1, p2) ' (r1, q2) '⁄ (q1, q2).

For necessity one can assume (1 and (2 are nonempty. Consider p1 Þ q1 in
(1 and take r2 P (2. Then ( p1, r2)' Þ (q1, r2)'. Suppose there is a (t1, t2)
such that ( p1, r2) ' (t1, t2) '⁄ (q1, r2); then p1 ' t1 '⁄ q2.
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